Рассмотрено
на заседании ШМО
Руководитель ШМО

Кокерене СЕ
Протокол №1 от
«3~ » 20 2020 г

Согласовано
Зам. директора
по УВР МБОУСОШ №10
____ И.И. Канатова
«____»___2020 г

РАБОЧАЯ ПРОГРАММА

учебного предмета «Информатика» для 10-11 классов

Составитель:

Гуликов Александр Владимирович, учитель информатики

Содержание рабочей программы

1. Пояснительная записка	3
2. Планируемые результаты освоения учебного предмета	5
3. Содержание учебного предмета	8
4. Учебно-тематический план	10
5. Методическое обеспечение	11

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по информатике и ИКТ для 10 - 11 классов средней школы (базовый уровень) разработана на основе следующих документов:

- Федерального Закона от 29.12.12 № 273-ФЗ «Об образовании в Российской Федерации»;
- приказа Министерства образования и науки Российской Федерации от 01 февраля 2012 г. N74 «О внесении изменений в федеральный базисный учебный план и примерные учебные планы для образовательных учреждений Российской Федерации, реализующих программы общего образования, утвержденные приказом Министерства образования Российской Федерации от 9 марта 2004 г. № 1312 "Об утверждении федерального базисного учебного плана и примерных учебных планов для образовательных учреждений Российской Федерации, реализующих программы общего образования"»;
- Приказа Министерства образования и науки РФ от 17 мая 2012 г. N 413 "Об утверждении федерального государственного образовательного стандарта среднего общего образования"
- авторской программы общеобразовательного курса (базового уровня) для 10-11 классов «Информатика и информационные технологии» Семакина И.Г.

Цели и задачи курса

Данная рабочая программа рассчитана на учащихся, освоивших базовый курс информатики и ИКТ в основной школе, предусматривает изучение тем образовательного стандарта, распределяет учебные часы по разделам курса и предполагает последовательность изучения разделов и тем учебного курса «Информатика» с учетом межпредметных и внутрипредметных связей, логики учебного процесса, определяет количество практических работ, необходимых для формирования информационно - коммуникационной компетентности учащихся.

Изучение информатики и информационных технологий в средней школе направлено на достижение следующих целей:

- освоение системы базовых знаний, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах:
- овладение умениями применять, анализировать, преобразовывать информационные модели реальных объектов и процессов,
- используя при этом информационные и коммуникационные технологии (ИКТ), в том числе при изучении других школьных дисциплин;
- развитие познавательных интересов, интеллектуальных и творческих способностей путем освоения и использования методов информатики и средств ИКТ при изучении различных учебных предметов;
- воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности;

• приобретение опыта использования информационных технологий в индивидуальной и коллективной учебной и познавательной, в том числе проектной деятельности.

Общая характеристика учебного предмета

Информатика и ИКТ — предмет, непосредственно востребуемый во всех видах профессиональной деятельности и различных траекториях продолжения обучения. Подготовка по этому предмету на базовом уровне способствует формированию современного научного мировоззрения, развитию интеллектуальных способностей и познавательных интересов школьников; освоение базирующихся на этой науке информационных технологий необходимо школьникам, как в самом образовательном процессе, так и в их повседневной и будущей жизни.

Систематизирующей основой содержания предмета «Информатика», изучаемого на разных ступенях школьного образования, является единая содержательная структура образовательной области, которая включает в себя следующие разделы:

- 1. Теоретические основы информатики.
- 2. Средства информатизации (технические и программные).
- 3. Информационные технологии.
- 4. Социальная информатика.

Приоритетной задачей курса информатики основной школы является информационной технологии решения задачи (которую не следует смешивать с изучением конкретных программных средств). При этим следует отметить, что в основной решаются типовые задачи с использованием типовых программных средств. Приоритетными объектами изучения информатики старшей школе являются информационные преимущественно автоматизированные информационные системы, связанные информационными процессами, и информационные технологии, рассматриваемые с позиций системного подхода. Это связано с тем, что базовый уровень старшей школы, ориентирован, прежде всего, на учащихся – гуманитариев. При этом, сам термин "гуманитарный" понимается как синоним широкой, "гуманитарной", культуры, а не простое противопоставление "естественнонаучному" образованию. При таком подходе важнейшая роль отводиться методологии решения типовых задач из различных образовательных областей. Основным моментом этой методологии является представления данных в виде информационных систем и моделей с целью последующего использования типовых программных средств. Это позволяет:

- обеспечить преемственность курса информатики основной и старшей школы (типовые задачи типовые программные средства в основной школе; нетиповые задачи типовые программные средства в рамках базового уровня старшей школы);
- систематизировать знания в области информатики и информационных технологий, полученные в основной школе, и углубить их с учетом выбранного профиля обучения;
- заложить основу для дальнейшего профессионального обучения, поскольку современная информационная деятельность носит, по преимуществу, системный характер;
- сформировать необходимые знания и навыки работы с информационными моделями и технологиями, позволяющие использовать их при изучении других предметов.

Основная задача базового уровня старшей школы состоит в изучении общих закономерностей функционирования, создания и применения информационных систем, преимущественно автоматизированных. С точки зрения содержания это позволяет развить основы системного видения мира, расширить возможности информационного моделирования, обеспечив тем самым значительное расширение и углубление межпредметных связей

информатики с другими дисциплинами. С точки зрения деятельности, это дает возможность сформировать методологию использования основных автоматизированных информационных систем в решении конкретных задач, связанных с анализом и представлением основных информационных процессов:

- автоматизированные информационные системы (АИС) хранения массивов информации (системы управления базами данных, информационно поисковые системы, геоинформационные системы);
- АИС обработки информации (системное программное обеспечение, инструментальное программное обеспечение, автоматизированное рабочее место, офисные пакеты);
- АИС передачи информации (сети, телекоммуникации);
- АИС управления (системы автоматизированного управления, автоматизированные системы управления, операционная система как система управления компьютером).

Место учебного предмета в учебном плане

Рабочая программа разработана в соответствии с примерной основной образовательной программой основного общего образования (в ред. п. № 1/20 от 04.02.2020 федерального учебно-методического объединения по общему образованию).

Данная программа рассчитана на 2 года – 10 – 11 класс.

Общее число учебных часов – 68 часов.

Планируемые результаты освоения учебного предмета

Личностные результаты

1. Сформированность мировоззрения, соответствующего современному уровню развития науки и техники.

Информатика формирует представления учащихся о науках, развивающих информационную картину мира, вводит их в область информационной деятельности людей. Ученики узнают о месте, которое занимает информатика в современной системе наук, об информационной картине мира, ее связи с другими научными областями. Ученики получают представление о современном уровне и перспективах развития ИКТ-отрасли, в реализации которых в будущем они, возможно, смогут принять участие.

2. Сформированность навыков сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Эффективным методом формирования данных качеств является учебно-проектная деятельность. Работа над проектом требует взаимодействия между учениками — исполнителями проекта, а также между учениками и учителем, формулирующим задание для проектирования, контролирующим ход его выполнения и принимающим результаты работы. В завершение работы предусматривается процедура защиты проекта перед коллективом класса, которая также требует наличия коммуникативных навыков у детей.

- 3. Бережное, ответственное и компетентное отношение к физическому и психологическому здоровью как к собственному, так и других людей, умение оказывать первую помощь.
- 4. Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов.

Данное качество формируется в процессе развития навыков самостоятельной учебной и учебно-исследовательской работы учеников. Выполнение проектных заданий требует от ученика проявления самостоятельности в изучении нового материала, в поиске информации в различных источниках. Такая деятельность раскрывает перед учениками возможные перспективы в изучении предмета и в дальнейшей профориентации в этом направлении

Метапредметные результаты

1. умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;

Данная компетенция формируется при изучении информатики в нескольких аспектах:

- учебно-проектная деятельность: планирование целей и процесса выполнения проекта и самоконтроль за результатами работы;
- изучение основ системологии: способствует формированию системного подхода к анализу объекта деятельности;
- алгоритмическая линия курса: алгоритм можно назвать планом достижения цели исходя из ограниченных ресурсов (исходных данных) и ограниченных возможностей исполнителя (системы команд исполнителя).
- 2. умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

Формированию данной компетенции способствуют следующие аспекты методической системы курса:

- формулировка многих вопросов и заданий к теоретическим разделам курса стимулирует к дискуссионной форме обсуждения и принятия согласованных решений;
- ряд проектных заданий предусматривает коллективное выполнение, требующее от учеников умения взаимодействовать; защита работы предполагает коллективное обсуждение ее результатов.
- 3. владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;

Формированию этой компетенции способствует методика индивидуального дифференцированного подхода при распределении практических заданий, которые разделены на три уровня сложности: репродуктивный, продуктивный и творческий. Такое разделение станет для некоторых учеников стимулирующим фактором к переоценке и повышению уровня своих знаний и умений. Дифференциация происходит и при распределении между учениками проектных заданий.

4. готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

Предметные результаты

- 1. сформированность представлений о роли информации и связанных с ней процессов в окружающем мире;
- 2. владение системой базовых знаний, отражающих вклад информатики в формирование современной научной картины мира;
- 3. сформированность представлений о важнейших видах дискретных объектов и об их простейших свойствах, алгоритмах анализа этих объектов, о *кодировании и декодировании* данных и причинах искажения данных при передаче;

- 4. систематизация знаний, относящихся к *математическим объектам информатики*; умение строить математические объекты информатики, в том числе логические формулы;
- 5. сформированность базовых навыков и умений по соблюдению требований *техники безопасности*, гигиены и ресурсосбережения при работе со средствами информатизации;
- 6. сформированность представлений об *устройстве современных компьютеров*, о тенденциях развития компьютерных технологий; о понятии «операционная система» и основных функциях операционных систем; об общих принципах разработки и функционирования интернет-приложений;
- 7. сформированность представлений о компьютерных сетях и их роли в современном мире; знаний базовых принципов организации и функционирования компьютерных сетей, норм информационной этики и права, принципов обеспечения информационной безопасности, способов и средств обеспечения надёжного функционирования средств ИКТ;
- 8. понимания основ *правовых аспектов* использования компьютерных программ и работы в Интернете;
- 9. владение опытом построения и использования компьютерно-математических моделей, проведения экспериментов и статистической обработки данных с помощью компьютера, интерпретации результатов, получаемых в ходе моделирования реальных процессов; умение оценивать числовые параметры моделируемых объектов и процессов; сформированность представлений о необходимости анализа соответствия модели и моделируемого объекта (процесса);
- 10. сформированность представлений о способах хранения и простейшей обработке данных; умение пользоваться *базами данных* и справочными системами; владение основными сведениями о базах данных, их структуре, средствах создания и работы с ними;
- 11. владение навыками *алгоритмического мышления* и понимание необходимости формального описания алгоритмов;
- 12. овладение понятием сложности алгоритма, знание основных алгоритмов обработки числовой и текстовой информации, алгоритмов поиска и сортировки;
- 13. владение стандартными приёмами написания на алгоритмическом языке программы для решения стандартной задачи с использованием основных конструкций программирования и отладки таких программ; использование готовых прикладных компьютерных программ по выбранной специализации;
- 14. владение *универсальным языком программирования высокого уровня* (по выбору), представлениями о базовых типах данных и структурах данных; умением использовать основные управляющие конструкции;
- 15. владение умением *понимать программы*, написанные на выбранном для изучения универсальном алгоритмическом языке высокого уровня; знанием основных конструкций программирования; умением анализировать алгоритмы с использованием таблиц;
- 16. владение навыками и опытом *разработки программ* в выбранной среде программирования, включая тестирование и отладку программ; владение элементарными навыками формализации прикладной задачи и документирования программ.

Содержание учебного предмета 10 класс

Введение. Структура информатики – 1 ч.

Цели и задачи изучения курса в 10–11 классах;из каких частей состоит предметная область информатики.

Информация – 11 ч.

Три философские концепции информации. Понятие информации в частных науках: нейрофизиологии, генетике, кибернетике, теории информации. Что такое язык представления информации; какие бывают языки. Понятия «кодирование» и «декодирование» информации. Примеры технических систем кодирования информации: азбука Морзе, телеграфный код Бодо. Понятия «шифрование», «дешифрование». Сущность объемного (алфавитного) подхода к измерению информации. Определение бита с алфавитной т.з. Связь между размером алфавита и информационным весом символа (в приближении равновероятности символов). Связь между единицами измерения информации: бит, байт, Кб, Мб, Гб. Сущность содержательного (вероятностного) подхода к измерению информации. Определение бита с позиции содержания сообщения.

<u>Практика на компьютере:</u> решение задач на измерение информации заключенной в тексте, с алфавитной т.з. (в приближении равной вероятности символов), а также заключенной в сообщении, используя содержательный подход (в равновероятном приближении), выполнение пересчета количества информации в разные единицы.

Информационные процессы – 5 ч.

История развития носителей информации. Современные (цифровые, компьютерные) типы носителей информации и их основные характеристики. Модель К. Шеннона передачи информации по техническим каналам связи. Основные характеристики каналов связи: скорость передачи, пропускная способность. Понятие «шум» и способы защиты от шума.

Основные типы задач обработки информации. Понятие исполнителя обработки информации. Понятие алгоритма обработки информации. Что такое «алгоритмические машины» в теории алгоритмов. Определение и свойства алгоритма управления алгоритмической машиной. Устройство и система команд алгоритмической машины Поста.

<u>Практика на компьютере:</u> автоматическая обработка данных с помощью алгоритмической машины Поста.

Программирование обработки информации – 17 ч.

Алгоритмы и величины. Структура алгоритмов. Паскаль — язык структурного программирования. Элементы языка Паскаль и типы данных. Операции, функции и выражения. Оператор присваивания, ввод и вывод данных. Логические величины, операции и выражения. Программирование ветвлений, циклов. Поэтапная разработка решения задачи. Вложенные и итерационные циклы. Вспомогательные алгоритмы и подпрограммы. Массивы. Организация ввода и вывода данных с использованием файлов. Типовые задачи обработки массивов. Символьный тип данных. Комбинированный тип данных.

11 класс

Информационные системы и базы данных – 10 ч.

Основные понятия системологии: система, структура, системный эффект, подсистема. Основные свойства систем: целесообразность, целостность. «Системный подход» в науке и практике. Отличие естественных и искусственных системы. Материальные и информационные типы связей действующие в системах. Роль информационных процессов в системах. Состав и структура систем управления. Назначение информационных систем. Состав информационных систем. Разновидности информационных систем.

База данных — основа информационной системы. Понятие базы данных (БД). Модели данных используемые в БД. Основные понятия реляционных БД: запись, поле, тип поля, главный ключ. Определение и назначение СУБД. Основы организации многотабличной БД. Схема БД. Целостность данных. Этапы создания многотабличной БД с помощью реляционной СУБД. Структура команды запроса на выборку данных из БД. Организация запроса на выборку в многотабличной БД. Основные логические операции, используемые в запросах. Правила представления условия выборки на языке запросов и в конструкторе запросов.

<u>Практика на компьютере:</u> освоение простейших приемов работы с готовой базой данных в среде СУБД: открытие БД; просмотр структуры БД в режиме конструктора; просмотр содержимого БД в режимах Форма и Таблица; добавление записей через форму; быстрая сортировка таблицы; использование фильтра; освоение приемов работы с СУБД в процессе создания спроектированной БД. освоение приемов реализации запросов на выборку с помощью конструктора запросов; создание формы таблицы; создание многотабличной БД; заполнение таблицы данными с помощью формы; отработка приемов реализации сложных запросов на выборку.

Интернет – 10 ч.

Назначение коммуникационных служб Интернета. Назначение информационных служб Интернета. Прикладные протоколы. Основные понятия WWW: web-страница, web-сервер, web-сайт, web-браузер, HTTP-протокол, URL-адрес. Поисковый каталог: организация, назначение. Поисковый указатель: организация, назначение.

<u>Практика на компьютере:</u> знакомство и практическое освоение работы с двумя видами информационных услуг глобальной сети: электронной почтой и телеконференциями; освоение приемов работы с браузером, изучение среды браузера и настройка браузера; освоение приемов извлечения фрагментов из загруженных Web-страниц, их вставка и сохранение в текстовых документах; освоение приемов работы с поисковыми системами Интернета: поиск информации с помощью поискового каталога; поиск информации с помощью поискового указателя.

Средства для создания web-страниц. Проектирование web-сайта. Публикация web-сайта. Возможности текстового процессора по созданию web-страниц. Знакомство с элементами HTML и структурой HTML-документа.

<u>Практика на компьютере:</u> освоение приемов создания Web-страниц и Web-сайтов с помощью текстового процессора; освоение приемов создания Web-страниц и Web-сайтов на языке HTML.

Информационное моделирование - 11

Компьютерное информационное моделирование. Понятия: величина, имя величины, тип величины, значение величины. Моделирование между величинами. Математическая модель. Формы представления зависимостей между величинами. Использование статистики к решению практических задач. Регрессионная модель. Прогнозирование по регрессионной модели.

<u>Практика на компьютере:</u> освоение способов построения по экспериментальным данным регрессионной модели и графического тренда средствами табличного процессора; освоение приемов прогнозирования количественных характеристик системы по регрессионной модели путем восстановления значений и экстраполяции.

Корреляционная зависимость. Коэффициент корреляции. Возможности табличного процессора для выполнения корреляционного анализа.

<u>Практика на компьютере</u>: получение представления о корреляционной зависимости величин; освоение способа вычисления коэффициента корреляции .

Оптимальное планирование. Ресурсы; как в модели описывается ограниченность ресурсов. Стратегическая цель планирования; какие условия для нее могут быть поставлены. Задача линейного программирования для нахождения оптимального плана. Возможности у табличного процессора для решения задачи линейного программирования.

<u>Практика на компьютере:</u> получение представления о построении оптимального плана методом линейного программирования; практическое освоение раздела табличного процессора «Поиск решения» для построения оптимального плана.

Социальная информатика – 3 ч.

Информационные ресурсы общества. Составные части рынка информационных ресурсов. Виды информационных услуг. Основные черты информационного общества. Причины информационного кризиса и пути его преодоления. Какие изменения в быту, в сфере образования будут происходить с формированием информационного общества. Основные законодательные акты в информационной сфере. Суть Доктрины информационной безопасности Российской Федерации. Основные правовые и этические нормы в информационной сфере деятельности.

<u>Практика на компьютере:</u> закрепление навыков создания мультимедийных презентаций; изучение, систематизация и наглядное представление учебного материала на тему «Социальная информатика».

Учебно-тематический план

No	Тема	Количество часов		
		10 класс	11 класс	Всего
1	Введение. Структура информатики.	1		1
2	Информация.	11		11
3	Информационные процессы.	5		5
4	Программирование обработки информации.	17		17
5	Информационные системы и базы данных		10	10
6	Интернет		10	10
7	Информационное моделирование		11	11
8	Социальная информатика		3	3
•		34	34	68

Методическое обеспечение

- Информатика. Базовый уровень: учебник для 10 класса Авторы: Семакин И. Г., Хеннер Е. К., Шеина Т. Ю. 2016г.
- Информатика. Базовый уровень: учебник для 11 класса Авторы: Семакин И. Г., Хеннер Е.К., Шеина Т. Ю. 2016г.
- Информатика. УМК для старшей школы: 10 11 классы (ФГОС). Методическое пособие для учителя. Базовый уровень. Авторы: Цветкова М. С., Хлобыстова И. Ю. 2013г.
- комплект Федеральных цифровых информационно-образовательных ресурсов (далее ФЦИОР), помещенный в коллекцию ФЦИОР (http://www.fcior.edu.ru);
- Сетевая методическая служба автора для педагогов на сайте издательства http://metodist.lbz.ru/authors/informatika/1
- Материалы для подготовки к итоговой аттестации по информатике в форме ЕГЭ, размещённые материалы на сайте http://kpolyakov.spb.ru/school/ege.htm;

Для реализации учебного курса «Информатика» необходимо наличие компьютерного класса.

Требования к программному обеспечению компьютеров

На компьютерах, которые расположены в кабинете информатики, должна быть установлена операционная система Windows или Linux, а также необходимое программное обеспечение:

- текстовый редактор (Блокнот) и текстовый процессор (Word или OpenOffice.org Writer);
- табличный процессор (Excel или OpenOffice.org Calc);
- средства для работы с базами данных (Access или OpenOffice.org Base);
- графический редактор Gimp (http://gimp.org);
- редактор звуковой информации Audacity (http://audacity.sourceforge.net);
- среда программирования КуМир (http://www.niisi.ru/kumir/);
- среда программирования PascalABC.net http://pascalabc.net/
- среда программирования Lazarus (http://lazarus.freepascal.org/)
- файловый менеджер (в составе операционной системы или др.).
- антивирусная программа.
- программа-архиватор.
- клавиатурный тренажер.
- виртуальные компьютерные лаборатории.
- программа-переводчик.
- система оптического распознавания текста.
- мультимедиа проигрыватель (входит в состав операционных систем или др.).
- браузер (входит в состав операционных систем или др.).
- программа интерактивного общения
- простой редактор Web-страниц